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OUTLINE

▪Why GaN for 400V EV inverters?

▪Challenges of inverter operation: transistor and system view

▪ Practical solutions and results

▪ 800V: is it possible for GaN? 

▪ Summary and what comes next
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Is GaN for passenger car inverter possible? 
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Fundamentals of Motor Inverter Operation  

©VisIC Technologies 2023 Public
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WLTC Standard ( Worldwide harmonized 

Light-duty vehicles Test Cycle) is the 30 

min test for passenger cars and light 

commercial vehicles mimicking 

driving cycle to measure

▪ mean fuel consumption,

▪ CO2 and other pollutants emissions

▪ EV car efficiency

DRIVING CYCLE: set of conditions car experiencing during driving lifetime
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Maximum power → high 
power dissipation
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Inverters are made for peak load 
condition
e.g. 150 kW – 250 kW

300 A – 500 A

Fundamentals of Inverter Operation: Efficiency  

https://www.motor-design.com/white-paper-ev-trade-off-analysis/
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~VOLTAGE

~96% EFFICIENCY
Most of time we are 

driving here:

Copyright 2022 - VisIC Technologies - All right reserved - Confidential

~75%-90% 
EFFICIENCY

Low current →

Low conduction 
losses →

Dominant 
switching losses 

Fundamentals of Inverter Operation: Efficiency  
SWITCHING LOSSES DICTATE INVERTER EFFICIENCY
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3 X lower losses than Si

2 X lower losses than SiC

POWER LOSSES OVER WLTC

(DONE BY TIER-1)
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Fundamentals of Inverter Operation: Test data  
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GaN Advantage depends on condition
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Thermal Design Simplify 

by shaving off heat 

Improving Inverter efficiency reduces battery size and increases driving 

distance 

10-20% 
Longer range

10%
Smaller battery 

Advantages of GaN based Highly Efficient Inverter

Car Cost Reduction 

by battery shrink

Drive Distance Increase 

by saving energy

GaN

tailored for 

inverters
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Challenges of EV inverter operation: 

from system to transistor



Device for EV power train

Target features: 

❑ Reliable by automotive standards

❑ Process uniformity to produce high current dice (>100A) at high yield 

❑ Low switching losses per given RDSON

❑ High threshold voltage (> 5V ) 

❑ Easily paralleled, 4-6 devices  

©VisIC Technologies 2023 Public
12



13

MISHEMT D-mode JFET or P-gate HEMT

D3GaN, VisIC
Integrated Driver, Texas 

Instruments

Cascode: IR (disc.) 
Transphorm, Nexperia

E-mode TSMC, EPC, Panasonic, 
Infineon, Innoscience

UVLO

S

VN

ADVANTAGES

-Low switching loss

-Driver integration with full  

protection

CONCERNS

-Low Power dissipation

-Complex paralleling

-Package complexity

ADVANTAGES

- Standard Si driver 

-Robust Positive VTH

CONCERNS

-Complex paralleling

-Package complexity

-High LS inductance

-High switching losses

ADVANTAGES

- Easy paralleling

-Single die solution

CONCERNS

-Low VTH

-Low gate isolation

Device design choice

ADVANTAGES

- Low switching loss

- Robust Positive VTH

- Low RON

- Easy paralleling

- Standard Si driver 0/+15

CONCERNS

- Package complexity

DIRECT DRIVE
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D-mode vs E-mode
1. D-mode is proven reliable technology widely employed in high power RADARs 

front end

2. D-mode has fundamentally lower specific RDSON for same class, due to 

absence of VT and RDRSON trade off

3. D-mode has fundamentally better reliability and robustness due to absence of 

doping-introduced defects
G a t e  c u r r e n t  v e r s u s  V g s [ V ]  d e p i c t i n g  o p e r a t i o n a l  r e g i o n  a n d  g a t e  b r e a k d o w n  

Operation Operation

Reverse 
breakdown

Forward 
breakdown

Reverse 
breakdown

Forward 
breakdown
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D3GaN – Direct Drive D-Mode GaN (1of2)

As SiC, D3GaN uses standard of-the-shelf gate drivers with a standard of-the-shelf Auxiliary Power Supply (VDD)

Gate – Source potential difference [Vgs] equals the difference of driver output potential 
and driver (VDD) potential.

Threshold voltage of GaN is -8V, therefore when
➢ Gate to Kelvin potential is 0V, GaN device is conducting (A)
➢ Gate to Kelvin potential is -18V, GaN device is not conducting (B)

Effective
Threshold Voltage 

is +10V

(A) (B)
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D3GaN – Direct Drive D-Mode GaN (2of2)

Q2 is ON when VDD is present and OFF when VDD is absent. 
Q2 is not taking part in the switching process. It’s held at “ON” during the switching 
of the D3GaN device
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GaN for traction inverters

GaN is able for 
easy paralleling 

GaN for 
reliability

GaN’s fast slew 
rate is 
controllable 

High efficiency at 
high current 

Additional 
improvement with 
new e-motor 

Robust technology 
& quality 

50% power loss reduction 
over the WLTP Driving Cycle

Inverter Power Loss Comparison

IGBT vs D³GaN

Source: major German automotive premium OEM

GaN is scalable 800V designs are in 
progress

©VisIC Technologies 2023 Public



Practical solutions and results



Main challenges

❑ INDUCTIVE LOAD SWITCHING: results in transistor switching loci with simultaneous high 

current and high voltage, which lead to high stress to device

❑ PARALLELING: High efficiency at high phase current requires multiple die paralleling, hence 

synchronous operation of multiple dice is required

❑ PARASITIC SIGNALS & SPIKES CONTROL : must be managed without increasing power losses

❑ SLEW RATE CONTROL: Customers need to control slew rate from 10 to 30 V/ns, with option 

up to 50 V/ns. High transconductance of GaN HEMT makes it challenging

©VisIC Technologies 2023 Public
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Main challenges: Inductive load switching

©VisIC Technologies 2023 Public
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▪ JEDEC standard JEP 182 provides guidelines for switching tests for 

GaN, with emphasis on right switching conditions

▪ Specific testing procedures which stress transistor in relevant 

conditions are required to optimize these transistors

JEP 182, ver 1.0, page 9



Main challenges: Inductive load switching

©VisIC Technologies 2023 Public
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TURN OFF
TURN ON

Black: 
Transient

Colored: 
steady 

state ON 
or OFF



Multi-pulse continuous test of HB 

with relevant current value, 

externally heated to 125°C 

Duration 60 minutes

©VisIC Technologies 2023 Public
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Inductive load switching: screening

Screening of weak devices



Inductive load switching: alternative approach 

©VisIC Technologies 2023 Public
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Q. Song et al., "GaN MIS-HEMTs in Repetitive Overvoltage Switching: Parametric 
Shift and Recovery," 2022 IEEE International Reliability Physics Symposium (IRPS), 
Dallas, TX, USA, 2022, pp. 10B.4-1-10B.4-7, doi: 10.1109/IRPS48227.2022.9764548.

Alternative tests developed in CPES, Virginia Tech, to characterize readiness of GaN for EV inverter  

LC resonant circuit 
using transistors’s Coss
helps to measure 
dynamic breakdown of 
the transistor and 
evaluate it’s
robustness in similar 
to inverter operation 
stress condition  



Paralleling of multiple devices
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Main objective is a timing synchronization which is required to ensure 

proper current sharing between devices

System of parallel devices: 

➢ Demands higher driver current

➢ More parasitic loops in the system

➢ Has higher gain value
More prone to  oscillations, 

requires careful layout



Paralleling of multiple devices: driver consideration

©VisIC Technologies 2023 Public
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Master driver

Local boosters

Local boosters Local boosters

Max ΔT =3.50C

Use a two matched power driver 
chips in one package driver, e.g. 
2ED24427 that has two 10 Amp 
matched drivers

Each driver drives two 
8 mOhm GaN devices

Use one Master and few boosters



Paralleling of multiple devices: layout design

©VisIC Technologies 2023 Public
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MAIN STEPS
SHIELD

Signal LAYERS

- HV+ HV

Back Plate

HF Power Loop

HS Switch LS SwitchPhase

1. Inductance reduction by minimizing the 
area enclosed by Power Loop

2. Increase current capability by adding 
layers and increasing Cu thickness

3. Decrease of capacitive coupling 
between phase terminal and rest of the 
circuit: 
by configuration of phase terminal

4. Reduction of HF noise coupling to 
control/driver circuits: 
by partitioning of functional areas, 
shielding

Trace capacitance 
C[pF]

Stray Inductance 
L[nH]

+HV'-Phase -HV' -Phase

VM022 235 240 1.87



Paralleling of multiple devices: layout design
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Layout→ EM simulation→ Optimization → Repeat →Manufacture --> Test --
> Calibrate --> Repeat All

SHIELD

Signal LAYERS

- HV+ HV

Back Plate

HF Power Loop

HS Switch LS SwitchPhase

Trace capacitance 
C[pF]

Stray Inductance 
L[nH]

+HV'-Phase -HV' -Phase

VM022 235 240 1.87



Paralleling of multiple devices: layout design

©VisIC Technologies 2023 Public
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Driver Board Ext. SwitchesClamp Board Int.
Power Loop

Clamping Loop

Driver Loop

Miller Spike 
Suppression

Turn ON
Turn OFF

Layout→ EM simulation→ Optimization → Repeat →Manufacture --> Test --
> Calibrate --> Repeat All



Paralleling of multiple devices: layout design
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Power Loop

Clamping Loop

Driver Loop

Miller Spike 
Suppression

Turn ON
Turn OFF

Inductance

Capacitance

* Inductive coupling needs more work 



Gate loop: layout design

©VisIC Technologies 2023 Public
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Layout→ EM simulation→ Optimization → Repeat →Manufacture --> Test --
> Calibrate --> Repeat All



Paralleling of multiple devices: device consideration

©VisIC Technologies 2023 Public
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measurement 
points

Verification of current sharing by direct 
measurement of voltage waveform on 
inductance of Q2

Median = -7.8V
Sigma = 0.40
N = 11063

Binning of devices by threshold 
voltage with “bin” size of +/- 0.5V 

80% of the all 
devices are good to 
be assembled in 
the same module  



Field Weakening Area
(non tested)

The “turn off” clamping through the driver is not efficient due to impedance of the slew rate 
control circuit and gate loop inductance. A proper layout and synchronization of “Miller clamp” 
are essential to hold switch OFF during the trip of the mid point. The gate surge can be reduced 
to couple of volts. High slew rate of 30 V/ns does not change.

G

D

S

GaN

+
-

LS OFF 

Slew Rate Control

VDD

Miller Clamp

CGD

CGS

Parasitic Gate 

Loop Inductance

HS ON

VDC BUS

Relatively big
 impedance

High slew rate trip

Charging 

Currents

6V surge on the gate voltage

High slew rate (30V/nSec) during the mid-point trip

~1V surge on the gate voltage

-15V -15V

0V

400V

Parasitic signals & spikes control by Miller clamp

400V
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Suppression of oscillation in GaN reverse conduction 
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❑ GaN does not have body diode  →

➢ Reverse conductivity is through the same channel →

➢ GaN has high transconductance and positive feedback in reverse 

conductivity  → result in oscillations

❑ As a result, traditional capacitance Miller ratio optimization (Cgs >> Cgd) 

does not work, and tuning must be done per specific design with external 

Cgs capacitance 



3-Phase  GaN Inverter , Closed loop DYNO set 
up, tested up to 113 kW

Current senseVoltage sense

PWM Interface

Cards

Field Weakening Area
(non tested yet)To

rq
u

e
 [

N
m

]
Speed [rpm]

Results:  400V EV GaN based prototype  
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Field Weakening Area
(non tested)

navy – phase 2 voltage;  orange – phase 1 current
blue – phase 2 current;   magenta – phase 3 current

Wave forms of phase voltage and currents of inverter output
Results of power meter:  
- Element 1/2/3 is measurements of phases 1, 2, 3 

correspondingly, 
- Element 4 – is measurement of the inverter input

Input power of the inverterSum of “phase” power is 
“output” power of the inverter

400VDC ; Phase current 350Arms/500Apeak; 
Velocity 2400 rpm

Results:  400V EV GaN based prototype , 

©VisIC Technologies 2023 Public
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WLTP Driving Cycle Efficiency 
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❑Max Efficiency point:

➢ 99.295%

➢ 2400RPM (160Hz)

➢ 92.8NM

➢ 24.4KW output

37



100

200

150

50

75

125

175

225

25

P
h

a
s
e

 C
u

rr
e

n
t 
[A

rm
s
]

Inverter efficiency [%]
Inverter input power [kW]

86.3kW

100

200

150

50

75

125

175

225

25

P
h

a
s
e

 C
u

rr
e

n
t 
[A

rm
s
]

WLTP Driving Cycle Efficiency 

Switching frequency 20kHz
Type of modulation Space Vector Modulation



Summary and 

What is next?
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Gen 1

6 Inch 

Specific Rdson: 6.8mΩ/cm2

Tjmax: 150°C

Die/Discrete

Lowest Rdson: 8mOhm

Voltage: 650V

Gen 2 (-50% vs Gen 1)

8 Inch Wafer

Specific Rdson: 3.4mΩ/cm2

Tjmax: 175°C

Lowest Rdson: 5mOhm

Voltage: 650V (transient 
>750V)

1200V (transient >1300V)

Gen 3 (-30% vs Gen 2)

12 Inch Wafer

Specific Rdson: 2.4mΩ/cm2

Tjmax: 200C+

Lowest Rdson: 4mOhm

Voltage: 650V (transient 
>750V)

1200V (transient >1300V)

2018                                             2023      ~     2025                        2026     ~    2030

More power packed in GaN

©VisIC Technologies 2023 Public



Foundry Tier1 / OEM
VisIC: Enabling GaN Automotive Drive Train 

by Die, Discrete & Module

VisIC Value Chain

GaN on Silicon

•IP

•Process

Die

•IP

•GaN Chip 
Design

•Si Mosfet

•Circuit

•Layout

•Metallization

•RDL, Copper, 
AL, ….

Discrete

•IP

•Packaging

•Isolated

•TLPS

•Molly Clip

Module

•IP

•Simple 
Structure

•Complex 
Design

•Interconnect

•Layout

Tier 1

•System 
Development

•Inverter 
Design

OEM

•Specification 
Definition

•Mission 
Profile

•Use case

Value Chain

Partnering
Gate Drivers, Cooling, Topologies

Demo Boards & Solutions

©VisIC Technologies 2023 Public
41



42

VM022 
Prototype based on 

4 parallel discrete 
V08 SMD 

VM044
A-Sample based on 
2x parallel V08 die

Gen 1 → 2

VM027 V2

VisIC GaN Module Design

GaN modules and embedding systems will 
emerge

©VisIC Technologies 2023 Public
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Semiconductor Inverter Efficiency at Tj=125C

SiC 

GaN

▪ GaN Three-level* compared to Two-level SiC based on Cree CAB400M12XM3 

*Based on Flying Capacitor Topology using next 
generation GaN device with reduced Rdson

3 level GaN solution 

shows a visible 

cost/performance 

advantage versus 

SiC 2 level

42% lower Loss

What is next: 800V

©VisIC Technologies 2023 Public

200kW GaN Inverter Simulation
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444 April 2023

WLTC System Impact Comparison

VisIC GaN devices
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3L Topologies – GaN

Topology  
Criteria

NPC
GaN 650V

SiC Diode 650V

T-Type
SiC Mosfet

1200V
GaN 650V

ANPC
GAN 650V

Efficiency + ++ ++

Footprint + ++ -

Cost + -- +

Simplicity + ++ -

Sustainability + - ++

Gate Driver 4x 4x 6x

Source: Picture & Data - University of Bern ©VisIC Technologies 2023 Public
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GaN power module oulook

VM044

Power Loop 5.7nH

Miller Current Gate Loop 3nH

Size 50x38x6mm

©VisIC Technologies 2023 Public
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VM044

2x V08/switch position

Sample Available Q3 2023



GaN can operate 400V EV inverter 
in passenger car power range

47

It is a lot of engineering work ahead to get GaN on the road in 
millions of EV

©VisIC Technologies 2023 Public
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