

GaN FOR EV POWER TRAIN: BREAKTHROUGHS AND CHALLENGES

Yana Ashkinazer, Adam Briga, Gregory Bunin, Ilia Bunin, Joey Chang, Ian Chen, Oren Cohen, Oleg Dubinsky, Alex Firtel, Yuri Gitelmakher, Oded Granot, Nissim Iskhakbaev, Dieter Liesabeths, Michael Manelis, Dima Novo, David Ptashnikov, Yulia Roiter, Memo Romero, Evgeny Rozanov, David Shapiro, Lev Stessin, Ray Tsai, Dana Verpinsky, Valery Verpinsky, Gleb Vetakh, Roman Volkov, Simon Wainwright, Shahar Wagner and others

and others

VisIC Technologies

OUTLINE

- Why GaN for 400V EV inverters?
- Challenges of inverter operation: transistor and system view
- Practical solutions and results
- 800V: is it possible for GaN?
- Summary and what comes next

Is GaN for passenger car inverter possible?

Tested at OEM with motor

Fundamentals of Motor Inverter Operation

DRIVING CYCLE: set of conditions car experiencing during driving lifetime

- WLTC Standard (Worldwide harmonized Light-duty vehicles Test Cycle) is the 30 min test for passenger cars and light commercial vehicles mimicking driving cycle to measure
- mean fuel consumption,
- CO₂ and other pollutants emissions
- EV car efficiency

	WLTC
Duration (s)	1800
Total distance (km)	23.27
Average speed (km/h)	46.5
Maximum speed (km/h)	131.3
Stop duration (%)	13.00

Fundamentals of Inverter Operation: Efficiency

Example of efficiency map of EM https://www.motor-design.com/white-paper-ev-trade-off-analysis/ Efficiency map of Volkswagen ID.3, Wassiliadis et al, eTransportation, Vol12, May '22, 100167

Fundamentals of Inverter Operation: Efficiency

Copyright 2022 - Visi Creichiologies 2023 Public Confidential

Fundamentals of Inverter Operation: Test data Visic (V)

GaN Advantage depends on condition

Advantages of GaN based Highly Efficient Inverter

Challenges of EV inverter operation:

from system to transistor

Device for EV power train

Target features:

- Reliable by automotive standards
- Process uniformity to produce high current dice (>100A) at high yield
- Low switching losses per given RDSON
- □ High threshold voltage (> 5V)
- Easily paralleled, 4-6 devices

Device design choice

DIRECT DRIVE	MISHEMT D-mode		JFET or P-gate HEMT
D ³ GaN, VisIC	Integrated Driver, Texas Instruments	Cascode: IR (disc.) Transphorm, Nexperia	E-mode TSMC, EPC, Panasonic, Infineon, Innoscience
ADVANTAGES - Low switching loss - Robust Positive V _{TH} - Low R _{ON} - Easy paralleling - Standard Si driver 0/+15 CONCERNS - Package complexity	ADVANTAGES -Low switching loss -Driver integration with full protection CONCERNS -Low Power dissipation -Complex paralleling -Package complexity	ADVANTAGES - Standard Si driver -Robust Positive VTH CONCERNS -Complex paralleling -Package complexity -High LS inductance -High switching losses	ADVANTAGES - Easy paralleling -Single die solution CONCERNS -Low VTH -Low gate isolation
Gate Drive +15 V _{DISO} GaN Enable	VN UVLO		

D-mode vs E-mode

- D-mode is proven reliable technology widely employed in high power RADARs front end
- 2. D-mode has fundamentally lower specific R_{DSON} for same class, due to absence of V_{T} and R_{DRSON} trade off
- 3. D-mode has fundamentally better reliability and robustness due to absence of doping-introduced defects

Device design choice

DIRECT DRIVE	MISHEMT D-mode		JFET or P-gate HEMT
D ³ GaN, VisIC	Integrated Driver, Texas Instruments	Cascode: IR (disc.) Transphorm, Nexperia	E-mode TSMC, EPC, Panasonic, Infineon, Innoscience
ADVANTAGES - Low switching loss - Robust Positive V _{TH} - Low R _{ON} - Easy paralleling - Standard Si driver 0/+15 CONCERNS - Package complexity	ADVANTAGES -Low switching loss -Driver integration with full protection CONCERNS -Low Power dissipation -Complex paralleling -Package complexity	ADVANTAGES - Standard Si driver -Robust Positive VTH CONCERNS -Complex paralleling -Package complexity -High LS inductance -High switching losses	ADVANTAGES - Easy paralleling -Single die solution CONCERNS -Low VTH -Low gate isolation
Gate Drive +15 V _{DISO} GaN Enable	VN UVLO		

D3GaN – Direct Drive D-Mode GaN (1of2)

Gate – Source potential difference [Vgs] equals the difference of driver output potential and driver (VDD) potential.

Threshold voltage of GaN is -8V, therefore when

- Gate to Kelvin potential is 0V, GaN device is conducting (A)
- Gate to Kelvin potential is -18V, GaN device is not conducting (B)

As SiC, D3GaN uses standard of-the-shelf gate drivers with a standard of-the-shelf Auxiliary Power Supply (VDD)

Effective

Threshold Voltage

is +10V

<u>D3GaN – Direct Drive D-Mode GaN (2of2)</u>

Q2 is ON when VDD is present and OFF when VDD is absent.

Q2 is not taking part in the switching process. It's held at "ON" during the switching of the D3GaN device

GaN for traction inverters

GaN is able for easy paralleling

GaN's fast slew rate is controllable

GaN for reliability

GaN is scalable

Robust technology & quality

800V designs are in progress

50% power loss reduction over the WLTP Driving Cycle

Practical solutions and results

Main challenges

INDUCTIVE LOAD SWITCHING: results in transistor switching loci with simultaneous high

current and high voltage, which lead to high stress to device

- PARALLELING: High efficiency at high phase current requires multiple die paralleling, hence synchronous operation of multiple dice is required
- PARASITIC SIGNALS & SPIKES CONTROL : must be managed without increasing power losses
- □ SLEW RATE CONTROL: Customers need to control slew rate from 10 to 30 V/ns, with option up to 50 V/ns. High transconductance of GaN HEMT makes it challenging

Main challenges: Inductive load switching

 JEDEC standard JEP 182 provides guidelines for switching tests for GaN, with emphasis on right switching conditions

 Specific testing procedures which stress transistor in relevant conditions are required to optimize these transistors

Main challenges: Inductive load switching

Inductive load switching: screening

Multi-pulse continuous test of HB with relevant current value, externally heated to 125°C

Duration 60 minutes

Screening of weak devices

Inductive load switching: alternative approach Visic (V)

Alternative tests developed in CPES, Virginia Tech, to characterize readiness of GaN for EV inverter

LC resonant circuit using transistors's Coss helps to measure dynamic breakdown of the transistor and evaluate it's robustness in similar to inverter operation stress condition

- Repetitive pulses at 90% of dyn BV voltage (unparalleled capability: competitor technology were at ~50% for d-mode and ~25% for e-mode).
- Negligible parametric shift were observed.
- Parametric results saturated after 1 million cycles.

Q. Song et al., "GaN MIS-HEMTs in Repetitive Overvoltage Switching: Parametric Shift and Recovery," 2022 IEEE International Reliability Physics Symposium (IRPS), Dallas, TX, USA, 2022, pp. 10B.4-1-10B.4-7, doi: 10.1109/IRPS48227.2022.9764548.

Paralleling of multiple devices

Main objective is a timing synchronization which is required to ensure

proper current sharing between devices

System of parallel devices:

- Demands higher driver current
- More parasitic loops in the system
- > Has higher gain value

More prone to oscillations,

requires careful layout

Paralleling of multiple devices: driver consideration Use one Master and few boosters. Use a two matched nower driver

Master driver

Local boosters

Use a two matched power driver chips in one package driver, e.g. 2ED24427 that has two 10 Amp matched drivers

> Each driver drives two 8 mOhm GaN devices

Paralleling of multiple devices: layout design

- 1. Inductance reduction by minimizing the area enclosed by Power Loop
- 2. Increase current capability by adding layers and increasing Cu thickness
- Decrease of capacitive coupling between phase terminal and rest of the circuit:

by configuration of phase terminal

4. Reduction of HF noise coupling to control/driver circuits:
by partitioning of functional areas, shielding

	Trace cap C[p	acitance oF]	Stray Inductance L[nH]
	+HV'-Phase	-HV' -Phase	
VM022	235	240	1.87

Layout → EM simulation → Optimization → Repeat → Manufacture --> Test --> Calibrate --> Repeat All

Paralleling of multiple devices: layout design

				1	1					
		DRV	/+Clamp+C	int.	[ORV+Clam	D		Driver Only	/
	[nH]	Power	GH	GL	Power	GH	GL	Power	GH	GL
Single Clamp	Power	5.86346	0.0567	0.0384	5.84369	0.05452	0.04686	6.15471	0.06578	0.05773
Single Clamp	GH	0.0567	0.44855	0.01961	0.05452	1.52836	0.01618	0.06578	16.639	0.03663
	GL	0.0384	0.01961	0.45069	0.04686	0.01618	1.57882	0.05773	0.03663	18.8811
		DRV+Clamp+C int.		[ORV+Clam	D		Driver Only	/	
	[nH]	Power	GH	GL	Power	GH	GL	Power	GH	GL
Dual Clamp	Power	5.78521	0.05645	0.03641	5.79212	0.0552	0.02044	6.15471	0.06578	0.05773
Dual Clamp	GH	0.05645	0.44398	0.0194	0.0552	1.16216	0.01451	0.06578	16.639	0.03663
	GL	0.03641	0.0194	0.44685	0.02044	0.01451	1.15538	0.05773	0.03663	18.8811

Capacitance

Inductance

Power	GH	GL
414.919	90.8815	124.939
90.8815	109.74	4.51449
124.939	4.51449	144.749
	Power 414.919 90.8815 124.939	PowerGH414.91990.881590.8815109.74124.9394.51449

	Ideal Driver Board					
hH]	Power	GH	GL			
ower	5.8149	0.06891	0.04455			
н	0.06891	6.87061	0.00852			
L	0.04455	0.00852	3.98402			

* Inductive coupling needs more work

31

Visl

Layout \rightarrow EM simulation \rightarrow Optimization \rightarrow Repeat \rightarrow Manufacture --> Test --> Calibrate --> Repeat All

Gate loop: layout design

Paralleling of multiple devices: device consideration

Verification of current sharing by direct measurement of voltage waveform on inductance of Q2 Binning of devices by threshold voltage with "bin" size of +/- 0.5V

Parasitic signals & spikes control by Miller clamp

The "turn off" clamping through the driver is not efficient due to impedance of the slew rate control circuit and gate loop inductance. A proper layout and synchronization of "Miller clamp" are essential to hold switch OFF during the trip of the mid point. The gate surge can be reduced to couple of volts. High slew rate of **30 V/ns** does not change.

Suppression of oscillation in GaN reverse conduction

- \Box GaN does not have body diode \rightarrow
 - \succ Reverse conductivity is through the same channel \rightarrow
 - ➤ GaN has high transconductance and positive feedback in reverse conductivity → result in oscillations
- As a result, traditional capacitance Miller ratio optimization (Cgs >> Cgd) does not work, and tuning must be done per specific design with external Cgs capacitance

Results: 400V EV GaN based prototype

3-Phase GaN Inverter , Closed loop DYNO set up, tested up to 113 kW

©VisIC Technologies 2023 Public

Results: 400V EV GaN based prototype,

400VDC ; Phase current 350Arms/500Apeak; Velocity 2400 rpm

Wave forms of phase voltage and currents of inverter output

navy – phase 2 voltage; orange – phase 1 current blue – phase 2 current; magenta – phase 3 current ©VisiC Technologies 2023 Public

Results of power meter:

- Element 1/2/3 is measurements of phases 1, 2, 3 correspondingly,
- Element 4 is measurement of the inverter input

WLTP Driving Cycle Efficiency

□ Max Efficiency point:

- > 99.295%
- > 2400RPM (160Hz)
- ≻ 92.8NM
- ➤ 24.4KW output

WLTP Driving Cycle Efficiency

Switching frequency 20kHz Type of modulation Space Vector Modulation

Summary and

What is next?

More power packed in GaN

Gen 1		
6 Inch Specific Rdson: 6.8mΩ/ci	Gen 2 (-50% vs Gen 1) r ² 8 Inch Wafer	— Gen 3 (-30% vs Gen 2)
Tjmax: 150°C Die/Discrete Lowest Rdson: 8mOhm	Specific Rdson: 3.4mΩ/cm ² Tjmax: 175°C Lowest Rdson: 5mOhm	12 Inch Wafer Specific Rdson: 2.4mΩ/cm ² Tjmax: 200C+
voltage: 650v	Voltage: 650V (transient >750V) 1200V (transient >1300V)	Lowest Rdson: 4mOhm Voltage: 650V (transient >750V)
	7	1200V (transient >1300V)

2025

2026 ~ 2030

2023

VisIC Value Chain

GaN modules and embedding systems will emerge

What is next: 800V

GaN Three-level* compared to Two-level SiC based on Cree CAB400M12XM3

Semiconductor Inverter Efficiency at Tj=125C

3 level GaN solution shows a visible cost/performance advantage versus SiC 2 level

*Based on Flying Capacitor Topology using next generation GaN device with reduced Rdson

WLTC System Impact Comparison

。百本

百本

154

VDC

 $V_{DC}/2$

KΔ

 $V_{pc}/2$

 $V_{DC}/2$

3L Topologies – GaN

Topology Criteria	NPC GaN 650V SiC Diode 650V	T-Type SiC Mosfet 1200V GaN 650V	ANPC GAN 650V	
Efficiency	+	++	++	
Footprint	+	++	-	
Cost	+		+	
Simplicity	+	++	-	
Sustainability	+	-	++	Т-Туре
Gate Driver	4x	4x	6x	
2L Si η map 93.7% η drive 83.0%	2L SiC 2L GaN NP 97.4% 97.2% 97.4 94.1% 93.3% 94.4	C TNPC ANPC % 97.5% 97.6% % 94.5% 94.0%		

Tab. 1: Global TI efficiency. First line is the mean efficiency over the EM map. Second line is the mean efficiency over all driving cycles.

45

GaN power module oulook

4.4mΩ 650V Half-Bridge D³GaN[™] Power Module

Description

The Transfer Molded Half Bridge module integrates $8m\Omega$ Power FETs for a $300A_{rms}$ class inverter and can be paralleled for higher power. The D³GaNTM technology uses high-density, lateral GaN power transistor, assembled into a Normally-Off product with extremely low Ros(oN) and exceptionally efficient switching performance.

The integrated safety functions ensure safe operation during system start up and shutdown, while having no impact on the switching performance of the GaN transistor.

Key Features

- Low inductance terminal connection to Busbars
- · Weldable power terminals
- Thermal case designed for sintering to the heatsink
- High Threshold voltage for fast switching transients
- High performance SiN ceramic substrate
- Standard 15V gate drive voltage
- NTC sensor
- Package Size 50x38x6mm

Applications

- Hybrid and Electric Vehicle Traction Inverter
- High Power DC-DC Converter

	VM044
Power Loop	5.7nH
Miller Current Gate Loop	3nH
Size	50x38x6mm

VM044

2x V08/switch position

Sample Available Q3 2023

GaN can operate 400V EV inverter in passenger car power range

It is a lot of engineering work ahead to get GaN on the road in millions of EV

THANK YOU

